Monografías
Publicar | Monografías por Categorías | Directorio de Sitios | Software Educativo | Juegos Educativos | Cursos On-Line Gratis

 

Dispositivos de microondas - Monografía



 
DESCARGA ESTA MONOGRAFÍA EN TU PC
Esta monografía en formato html para que puedas guardarla en tu pc e imprimirla.



Vínculo Patrocinado




Aquí te dejamos la descarga gratuita
Nota: para poder abrir archivos html solo necesitas tener instalado internet explorer u otro navegador web.




Electrónica. Transmisión sin cables. Antenas. Torres. Satélite. Radioenlaces. Propagación. Desvanecimiento. Señales



Dispositivos de microondas


La ingeniería de microondas/milimétricas tiene que ver con todos aquéllos dispositivos, componentes y sistemas que trabajen en el rango frecuencial de 300 MHz a 300 GHz. Debido a tan amplio margen de frecuencias, tales componentes encuentran aplicación en diversos sistemas de comunicación. Ejemplo típico es un enlace de Radiocomunicaciones terrestre a 6 GHz en el cual detrás de las antenas emisora y receptora, hay toda una circuitería capaz de generar, distribuir, modular, amplificar, mezclar, filtrar y detectar la señal. Otros ejemplos lo constituyen los sistemas de comunicación por satélite, los sistemas radar y los sistemas de comunicación móviles, muy en boga en nuestros días.
La tecnología de semiconductores, que proporciona dispositivos activos que operan en el rango de las microondas, junto con la invención de líneas de transmisión planares; ha permitido la realización de tales funciones por circuitos híbridos de microondas.
En estos circuitos, sobre un determinado sustrato se definen las líneas de transmisión necesarias. Elementos pasivos (condensadores, resistencias) y activos (transistores, diodos) son posteriormente incorporados al circuito mediante el uso de pastas adhesivas y técnicas de soldadura. De ahí el nombre de tecnología híbrida de circuitos integrados (HMIC: “Hibrid Microwave Integrated Circuit”). Recientemente, la tecnología monolítica de circuitos de microondas (MMIC), permite el diseño de circuitos/subsistemas capaces de realizar, muchas de las funciones mencionadas anteriormente, en un sólo “chip”. Por las ventajas que ofrece ésta tecnología, su aplicación en el diseño de amplificadores para receptores ópticos, constituye un campo activo de investigación y desarrollo. Prueba de ello es el trabajo realizado con la Universidad Politécnica de Madrid.

El diseño de circuitos de microondas en ambas tecnologías, ha exigido un modelado preciso de los diferentes elementos que forman el circuito. De especial importancia son los dispositivos activos (MESFET, HEMT, HBT); pues conocer su comportamiento tanto en pequeña señal como en gran señal (régimen no lineal), es imprescindible para poder predecir la respuesta de un determinado circuito que haga uso de él. El análisis, modelado y simulación de éstos dispositivos, constituye otra de las áreas de trabajo


Materiales en comunicaciones



La utilización de nuevos materiales con altas prestaciones es uno de los pilares del avance espectacular de las tecnologías de la información y comunicaciones. El desarrollo de aplicaciones basadas en sus propiedades requiere un profundo conocimiento previo de éstas. En particular, el descubrimiento de superconductividad en óxidos cerámicos multimetálicos a temperaturas superiores a 77 K (superconductores de alta temperatura, SAT) puede permitir del desarrollo práctico de algunas aplicaciones de la superconductividad económicamente inviables con los superconductores clásicos. Sin embargo, la gran complejidad de los SAT y su naturaleza granular dificultan la puesta en marcha de aplicaciones de los mismos de forma inmediata, a pesar del gran esfuerzo investigador que en este campo se está realizando en los países avanzados. En concreto, en nuestro grupo se ha trabajado en la caracterización experimental y modelado fenomenológico de las propiedades electromagnéticas de superconductores de alta temperatura crítica, incidiendo especialmente en las implicaciones de la granularidad, y en el desarrollo de aplicaciones de los mismos en magnetometría y en cintas para el transporte de corriente sin pérdidas. Por otra parte, en relación con las aplicaciones de la superconductividad clásica, se ha trabajado en la implementación en España de los patrones primarios de tensión (efecto Josephson) y resistencia (efecto Hall cuántico), en colaboración con grupos nacionales y extranjeros especializados en metrología eléctrica básica. Por último, también se ha colaborado con otros grupos de investigación en la caracterización electromagnética de materiales de interés tecnológico, como imanes permanentes o aceros estructurales

TRANSMISIÓN SIN CABLES



INTRODUCCION



Cuando se piensa en comunicación de datos generalmente se piensa en comunicación a través de cable, debido a que la mayoría de nosotros tratamos con este tipo de tecnología en nuestro día a día. Haciendo a un lado las complicadas redes cableadas también tenemos la llamada COMUNICACIÓN INALÁMBRICA muy comúnmente a nuestro alrededor.

La Comunicación de data inalámbrica en la forma de microondas y enlaces de satélites son usados para transferir voz y data a larga distancia. Los canales inalámbricos son utilizados para la comunicación digital cuando no es económicamente conveniente la conexión de dos puntos vía cable; además son ampliamente utilizados para interconectar redes locales (LANS) con sus homologas redes de área amplia (WANS) sobre distancias moderadas y obstáculos como autopistas, lagos, edificios y ríos. Los enlaces vía satélite permiten no solo rebasar obstáculos físicos sino que son capaces de comunicar continentes enteros, barcos, rebasando distancia sumamente grandes.

Los sistemas de satélites y de microondas utilizan frecuencias que están en el rango de los MHz y GHz, usualmente utilizan diferentes frecuencias para evitar interferencias pero comparten algunas bandas de frecuencias.


COMUNICACIÓN VÍA MICROONDAS



Básicamente un enlace vía microondas consiste en tres componentes fundamentales: El Transmisor, El receptor y El Canal Aéreo. El Transmisor es el responsable de modular una señal digital a la frecuencia utilizada para transmitir, El Canal Aéreo representa un camino abierto entre el transmisor y el receptor, y como es de esperarse el receptor es el encargado de capturar la señal transmitida y llevarla de nuevo a señal digital.

El factor limitante de la propagación de la señal en enlaces microondas es la distancia que se debe cubrir entre el transmisor y el receptor, además esta distancia debe ser libre de obstáculos. Otro aspecto que se debe señalar es que en estos enlaces, el camino entre el receptor y el transmisor debe tener una altura mínima sobre los obstáculos en la vía, para compensar este efecto se utilizan torres para ajustar dichas alturas.


ANTENAS Y TORRES DE MICROONDAS


La distancia cubierta por enlaces microondas puede ser incrementada por el uso de repetidoras, las cuales amplifican y redireccionan la señal, es importante destacar que los obstáculos de la señal pueden ser salvados a través de reflectores pasivos. Las siguientes figuras muestran como trabaja un repetidor y como se ven los reflectores pasivos.

104888.gif

La señal de microondas transmitidas es distorsionada y atenuada mientras viaja desde el transmisor hasta el receptor, estas atenuaciones y distorsiones son causadas por una perdida de poder dependiente a la distancia, reflexión y refracción debido a obstáculos y superficies reflectoras, y a pérdidas atmosféricas.

La siguiente es una lista de frecuencias utilizadas por los sistemas de microondas:

Common Carrier Operational Fixed

2.110 2.130 GHz
1.850 1.990 GHz
2.160 2.180 GHz
2.130 2.150 GHz
3.700 4.200 GHz
2.180 2.200 GHz
5.925 6.425 GHz
2.500 2.690 GHz
10.7 11.700 GHz
6.575 6.875 GHz
12.2 12.700 GHz

Debido al uso de las frecuencias antes mencionadas algunas de las ventajas son:

- Antenas relativamente pequeñas son efectivas.
- A estas frecuencias las ondas de radio se comportan como ondas de luz, por ello la señal puede ser enfocada utilizando antenas parabólicas y antenas de embudo, además pueden ser reflejadas con reflectores pasivos.
- Ora ventaja es el ancho de banda, que va de 2 a 24 GHz.

Como todo en la vida, el uso de estas frecuencias también posee desventajas:
Las frecuencias son susceptibles a un fenómeno llamado Disminución de Multicamino (Multipath Fafing), lo que causa profundas disminuciones en el poder de las señales recibidas.
A estas frecuencias las perdidas ambientales se transforman en un factor importante, la absorción de poder causada por la lluvia puede afectar dramáticamente el Performance del canal.

COMUNICACIÓN POR SATÉLITE


Básicamente, los enlaces satelitales son iguales a los de microondas excepto que uno de los extremos de la conexión se encuentra en el espacio, como se había mencionado un factor limitante para la comunicación microondas es que tiene que existir una línea recta entre los dos puntos pero como la tierra es esférica esta línea se ve limitada en tamaño entonces, colocando sea el receptor o el transmisor en el espacio se cubre un área más grande de superficie.

El siguiente gráfico muestra un diagrama sencillo de un enlace vía satélite, nótese que los términos UPLINK y DOWNLINK aparecen en la figura, el primero se refiere al enlace de la tierra al satélite y la segunda del satélite a la tierra.
104889.gif

Las comunicaciones vía satélite poseen numerosas ventajas sobre las comunicaciones terrestres, la siguiente es una lista de algunas de estas ventajas:

- El costo de un satélite es independiente a la distancia que valla a cubrir.
- La comunicación entre dos estaciones terrestres no necesita de un gran número de repetidoras puesto que solo se utiliza un satélite.
- Las poblaciones pueden ser cubiertas con una sola señal de satélite, sin tener que preocuparse en gran medida del problema de los obstáculos.
- Grandes cantidades de ancho de bandas están disponibles en los circuitos satelitales generando mayores velocidades en la transmisión de voz, data y vídeo sin hacer uso de un costoso enlace telefónico.

Estas ventajas poseen sus contrapartes, alguna de ellas son:

- El retardo entre el UPLINK y el DOWNLINK esta alrededor de un cuarto de segundo, o de medio segundo para una señal de eco.
- La absorción por la lluvia es proporcional a la frecuencia de la onda.
- Conexiones satelitales multiplexadas imponen un retardo que afectan las comunicaciones de voz, por lo cual son generalmente evitadas.

Los satélites de comunicación están frecuentemente ubicados en lo que llamamos Orbitas Geosincronizadas, lo que significa que el satélite circulará la tierra a la misma velocidad en que esta rota lo que lo hace parecer inmóvil desde la tierra. Un a ventaja de esto es que el satélite siempre esta a la disposición para su uso. Un satélite para estar en este tipo de órbitas debe ser posicionado a 13.937,5 Kms. de altura, con lo que es posible cubrir a toda la tierra utilizando solo tres satélites como lo muestra la figura.

104890.gif

Un satélite no puede retransmitir una señal a la misma frecuencia a la que es recibida, si esto ocurriese el satélite interferiría con la señal de la estación terrestre, por esto el satélite tiene que convertir la señal recibida de una frecuencia a otra antes de retransmitirla, para hacer esto lo hacemos con algo llamado “Transponders”. La siguiente imagen muestra como es el proceso.

Al igual que los enlaces de microondas las señales transmitidas vía satélites son también degradadas por la distancia y las condiciones atmosféricas.

Otro punto que cabe destacar es que existen satélites que se encargan de regenerar la señal recibida antes de retransmitirla, pero estos solo pueden ser utilizados para señales digitales, mientras que los satélites que no lo hacen pueden trabajar con ambos tipos de señales (Análogas y Digitales).

1. MICROONDAS



Se denomina así la porción del espectro electromagnético que cubre las frecuencias entre aproximadamente 3 Ghz y 300 Ghz (1 Ghz = 10^9 Hz), que corresponde a la longitud de onda en vacío entre 10 cm. y 1mm.

La propiedad fundamental que caracteriza a este rango de frecuencia es que el rango de ondas correspondientes es comparable con la dimensión físicas de los sistemas de laboratorio; debido a esta peculiaridad, las m. Exigen un tratamiento particular que no es extrapolable de ninguno de los métodos de trabajo utilizados en los márgenes de frecuencias con que limita. Estos dos límites lo constituyen la radiofrecuencia y el infrarrojo lejano. En radiofrecuencia son útiles los conceptos de circuitos con parámetros localizados, debido a que, en general, las longitudes de onda son mucho mayores que las longitudes de los dispositivos, pudiendo así, hablarse de autoinducciones, capacidades, resistencias, etc., debido que no es preciso tener en cuenta la propagación efectiva de la onda en dicho elemento; por el contrario, en las frecuencias superiores a las de m. son aplicables los métodos de tipo OPTICO, debido a que las longitudes de onda comienzan a ser despreciables frente a las dimensiones de los dispositivos.

El método de análisis más general y ampliamente utilizado en m. consiste en la utilización del campo electromagnético caracterizado por los vectores (E, B, D y H en presencia de medios materiales), teniendo en cuenta las ecuaciones de MAXWELL (v), que rigen su comportamiento y las condiciones de contorno metálicos son muy frecuentes a estas frecuencias, cabe destacar que, p.ej, el campo E es normal y el campo H es tangencial en las proximidades externas de un conductor. No obstante, en las márgenes externas de las m. se utilizan frecuentemente los métodos de análisis correspondientes al rango contiguo del espectro; así, a frecuencias elevadas m. son útiles los conceptos de RAYO, LENTE, etc., ampliamente utilizados en óptica, sobre todo cuando la propagación es transversal electromagnética, (TEM, E y B perpendiculares entre sí y a la dirección de propagación) en el espacio libre. Por otro lado, a frecuencias bajas de m, colindantes con las radiofrecuencias, es útil la teoría de circuitos con parámetros distribuidos, en la que toma en cuenta la propagación efectiva que va a tener la onda en un elemento cualquiera. Así, un trozo de cable metálico, que en baja frecuencia representa simplemente un corto circuito que sirve para efectuar una conexión entre elementos, dejando equipotenciales los puntos que une, a alta frecuencia un sistema cuya frecuencia, por efecto peculiar, puede no ser despreciable y cuya autoinducción puede causar una impedancia que sea preciso tomar en cuenta. Entonces es preciso representar este cable a través de su impedancia (resistencia y autoinducción) por unidad de longitud.

También en la parte de instrumentación experimental, generación y transmisión de m, estas tienen peculiaridades propias que obligan a utilizar con características diferentes a los de los rangos de frecuencias vecinos. Respecto a limitaciones que impiden su funcionamiento a frecuencias de m., como a continuación esquematizamos.

Las líneas de baja frecuencia son usualmente ABIERTAS, con lo cual, si se intenta utilizar a frecuencias elevadas, automáticamente surgen problemas de radiación de la energía electromagnética; para superar este inconveniente es necesario confirmar los campos electromagnéticos, lo que normalmente se efectúa por medio de contornos metálicos; así, los sistemas de transmisión usuales a m. son, o bien lineas coaxiales, o bien, en general, guías de onda continuadas por conductores abiertos o tuberías. En este sentido es ilustrativo ver la evolución de un circuito resonante LC paralelo de baja frecuencia hacia una cavidad resonante, que es circuito equivalente en m. Como a alta frecuencia las inductancias y capacidades (ELECTROSTÁTICA; INDUCCIÓN ELECTROMAGNÉTICA), cobran gran importancia, por pequeñas que sean, un circuito resonante para frecuencias RELATIVAS ALTAS puede ser sencillamente dos placas paralelas y una espira uniendo ambas placas; es para reducir aún más la inductancia se ponen varias espiras en paralelo, se llega a obtener una región completamente cerrada por paredes conductoras.

La energía electromagnética solo puede almacenarse en una cavidad a frecuencias próximas a las denominadas de resonancia de la misma, las cuales dependen fndamentalmente de su geometría; los campos anteriores penetran solo en una capa delgada de las paredes metálicas siendo el espesor ô, de esta capa, denominada profundidad de penetración, dependiente de la frecuencia y de la conductividad del material que constituya a la cavidad a través de la expresión ô= 2/WUO, donde W,U y son respectivamente la frecuencia de la onda, la permeabilidad magnética y conductividad del material (ELECTRICA, CONDUCCION, ELECTROMAGNETISMO) así, para los siguientes metales: aluminio, oro, cobre y plata, los valores de ô a 3Ghz son respectivamente de 1,6, 1,4, 1,2 y 1,4 u. De esta forma es fácil comprender que la energía disipada en las cavidades, si éstas están hechas por buenos conductores, es pequeña, con lo cual las Q, o factores de mérito de las cavidades resonantes Q =2 ƒƒ (energía almacenada)/(energía disipada por ciclo), suelen estar en orden de 10 ^4, pudiendo alcanzar valores mas elevados. Por otra parte el pequeño valor de ô permite fabricar guías de excelente calidad con un simple recubrimiento interior de buen material conductor, (plateado o dorado).

La utilización en m, de las válvulas de vacío convencionales, como amplificadores osciladores, esta limitada, por una parte, por el tiempo de tránsito de los electrones en el interior de la válvula y, por otra, por las inductancias y por las capacidades asociadas al cableado y los electrodos de la misma.

El tiempo de tránsito al hacerce comparable con el período de las oscilaciones, da lugar a que haya un defase entre el campo y las oscilaciones de los electrones; esto implica un consumo de energía que disminuye la impedancia de entrada de la válvula, aunque su rejilla, polarizada negativamente, no capte electrones. Las inductancias y capacidades parásitas causan efectos de resonancia y acople interelectrónico que también conducen a una limitación obvia.

Son muchas las modificaciones sugeridas y utilizadas para superar estos inconvenientes, basándose en los mismos principios de funcionamiento, pero, a frecuencias ya de lleno en el rango de las m., tanto los circuitos de válvulas como los semiconductores trabajan según una concepción completamente diferente a los correspondientes de la baja frecuencia.

MODULACION EN MICROONDAS



Los generadores de microondas son generadores críticos en cuanto a la tensión y la corriente de funcionamiento.

Uno de los medios es no actuar sobre el generador o amplificador pero si utilizar un dispositivo diodo pin en la guía de salida, modulada directamente la amplitud de la onda.

Otro medio es utilizar un desfasador de ferrita y modular la onda en fase. En este caso es fácil obtener modulación en frecuencia a través del siguiente proceso:

En una primera etapa, se modula en FM una portadora de baja frecuencia, por ejemplo 70 Mhz.

En una segunda etapa, esta portadora modulada es mezclada con la portadora
principal en frecuencia de Ghz, por ejemplo 10 Ghz.

Un filtro de frecuencias deja pasar la frecuencia suma, 10070 Mhz con sus bandas laterales de 3 Mhz y por lo tanto la banda pasante será de 10067 a 10073 Mhz que es la señal final de microondas.

En el receptor se hace la mezcla de esta señal con el oscilador local de 10 Ghz seguido de un filtro que aprovecha la frecuencia de diferencia 70 Mhz la cual es amplificada y después detectada por las técnicas usuales en FM.

VENTAJAS DE LOS RADIOENLACES DE MICROONDAS COMPARADOS CON LOS SISTEMAS DE LINEA METALICA



- Volumen de inversión generalmente mas reducido.
- Instalación más rápida y sencilla.
- Conservación generalmente más económica y de actuación rápida.
- Puede superarse las irregularidades del terreno.
- La regulación solo debe aplicarse al equipo, puesto que las características del medio de transmisión son esencialmente constantes en el ancho de banda de trabajo.
- Puede aumentarse la separación entre repetidores, incrementando la altura de las torres.

DESVENTAJAS DE LOS RADIOENLACES DE MICROONDAS COMPARADOS CON LOS SISTEMAS DE LINEA METALICA



- Explotación restringida a tramos con visibilidad directa para los enlaces.
- Necesidad de acceso adecuado a las estaciones repetidoras en las que hay que disponer de energía y acondicionamiento para los equipos y servicios de conservación. Se han hecho ensayos para utilizar generadores autónomos y baterías de células solares.
- La segregación, aunque es posible y se realiza, no es tan flexible como en los sistemas por cable
- Las condiciones atmosféricas pueden ocasionar desvanecimientos intensos y desviaciones del haz, lo que implica utilizar sistemas de diversidad y equipo auxiliar requerida, supone un importante problema en diseño.

ESTRUCTURA GENERAL DE UN RADIOENLACE POR MOCROONDAS



EQUIPOS



Un radioenlace esta constituido por equipos terminales y repetidores intermedios. La función de los repetidores es salvar la falta de visibilidad impuesta por la curvatura terrestre y conseguir así enlaces superiores al horizonte óptico. La distancia entre repetidores se llama vano.

Los repetidores pueden ser:

- Activos
- Pasivos

En los repetidores pasivos o reflectores.

- No hay ganancia
- Se limitan a cambiar la dirección del haz radielectrónico.

PLANES DE FRECUENCIA - ANCHO DE BANDA EN UN RADIOENLACE POR MICROONDAS



En una estación terminal se requieran dos frecuencias por radiocanal.

- Frecuencia de emisión
- Frecuencia de recepción

Es una estación repetidora que tiene como mínimo una antena por cada dirección, es absolutamente necesario que las frecuencias de emisión y recepción estén suficientemente separadas, debido a:

1. La gran diferencia entre los niveles de las señales emitida y recibida, que puede ser de 60 a 90 dB.
2. La necesidad de evitar los acoples entre ambos sentidos de transmisión.
3. La directividad insuficiente de las antenas sobre todas las ondas métricas.

Por consiguiente en ondas métricas (30-300 Mhz) y decimétricas (300 Mhz - 3 Ghz), conviene utilizar cuatro frecuencias (plan de 4 frecuencias).

En ondas centimétricas, la directividad es mayor y puede emplearse un plan de 2 frecuencias.

104891.gif

2. GENERACION DE MICROONDAS



Quizás fue el MAGNETRON, como generador de m. De alta potencia, el dispositivo que dio pie al desarrollo a gran escala de las m., al abrir paso a la utilización de sistemas de radar durante la II Guerra Mundial; sin embargo, fueron KLYSTRONS, los que dieron una mayor versatilidad de utilización de las m., sobre todo en el campo de las comunicaciones, permitiendo además una mayor comprensión de los fenómenos que tiene en lugar los tubos de m. El principio básico de funcionamiento de estos generadores es la modulación de velocidad de un haz electrónico que al atravesar una cavidad resonante, exita en ella oscilaciones electromagnéticas de la frecuencia de m, deseada. El estudio de los KLYSTRONS obligó a un amplio desarrollo desde los fenómenos de carga espacial, la interpretación de la operación de los tubos

Sin embargo, fue el desarrollo de otro tipo de válvulas, las de ONDA PROGRESIVA (TWT, Travelling-Wave Tube); siglas de ésta clase de tubos, las que dieron lugar a una mejor compresión de los fenómenos que tienen lugar en los haces electrónicos, sobre todo en lo que respecta a las ondas electromecánicas, daban lugar a amplificación o generación de m. Para que este acoplamiento sea efectivo es preciso reducir la velocidad de fase de la onda electromagnética lo cual se hace mediante estructuras periódicas de entre las cuales la más utilizada es la hélice; de esta forma es posible mantener una iteración continuada entre la onda electromagnética y el haz electrónico, modulado en velocidad, y consecuentemente en densidad, que va cediendo su energía, digamos cinética, a la onda electromagnética. Posteriormente también se desarrollo el tubo de onda regresiva (BWO< Backward- wave oscillator), en el cual la velocidad de fase de la onda va en dirección opuesta al flujo de energía en el circuito, que ofrecí a, además, una mayor amplitud de sintonía en frecuencia mediante control electrónico.

Los dispositivos anteriores se basan en la conversión de energía de continuidad en la energía de m, mientras que los amplificadores paramétricos (AMPLIFICADOR, 8) utilizan como fuente de energía una de alterna que convierten, por un procedimiento de mezcla, en la de alta frecuencia deseada. En lugar de utilizar como elemento resistivo, utilizan un elemento reactivo, como puede ser un diodo de capacidad variable, y de aquí el bajo nivel de ruido que se puede lograr. Un fundamento análogo tienen los amplificadores cuánticos MASER. Son estos amplificadores de bajo nivel de ruido los que han abierto un gran campo de operación en radioastronomía, así como las intercontinentales vía satélite etc.

Un problema conserniente al desarrollo de las m, lo ha constituido hasta ahora el precio elevado de los generadores; ha sido el decubrimiento de los osciladores a semiconductores el que a abaratado, va camino de hacerlo aun más, dichos generadores, con el cual el campo de aplicaciones de las m.

Está creciendo a un nivel tal que impide predecir las repercusiones futuras, que incluso pueden ser negativas. Estos dispositivos también tienen una concepción diferente a los usuarios de baja frecuencia esencial en que en los de baja frecuencia los electrones del semiconductor son TIBIOS en el sentido que sus energías no difieren grandemente de la red del material, mientras que en los de m. Los electrones son CALIENTES, con energías eléctricas adquiridas de campos eléctricos elevados, que pueden ser muy superiormente a energía de m.

El primero de estos dispositivos se basó en el denominado efecto GUNN que se presenta en semiconductores compuestos, como el arseniuro de galio, material en el fue inicialmente detectado, y desde entonces se han descrito muchos dispositivos, algunos basados en fenómenos bulímicos en el semiconductor, como los gunn, y otros fenómenos que tienen lugar en uniones de semiconductores.


TRANSMISION DE MICROONDAS



Un sistema en el que se utilizan localmente las m. Constará fundamentalmente de un generador y de un medio de transmisión de la onda hasta la carga; en caso contrario, tendremos necesidad de un sistema emisor y otro receptor, estando el emisor compuesto por los elementos anteriormente citados, donde la carga sera una antena emisora, mientras que el receptor sera otra antena, medio de transmisión y detector adecuado.

Además de estos elementos existirán otras componentes como pueden ser atenuadores, desfasadores, frecuencimetros, medidores de onda estacionaria, etc.; nosotros nos vamos a circunscribir fundamentalmente a la guía de onda, como elemento fundamental de transmisión a éstas frecuencias.

Como ya se ha citado, la guía de onda es esencia una tubería metálica, a través de la cual se propaga el campo electromagnético sin prácticamente atenuación, dependiendo esta del material de que la misma esté fabricada; así, a una frecuencia determinada, y para una geometría concreta, la atenuación será tanto menor cuanto mejor conductor sea el material. A diferencia de lo que ocurre en el medio libre, en el que el haz de ondas electromagnéticas es mas o menos divergente y sus campos transversales electromagnéticos (ondas TEM, ya citadas), en una guía el campo esta confinado en su interior, evitándose la radiación hacia el exterior, y sus campos ya no pueden ser TEM sino que han de hacer necesariamente del tipo TE (campo electrónico transversal a la dirección de propagación), o bien TM (campo magnético transversal) o bien híbridos, es decir, mezcla de TE y TM.

La configuración de la geometría, tipo de excitación de la guía y frecuencia, ocurriendo además que ciertas configuraciones de campo, denominadas modos, solo son posibles a frecuencias superiores a una determinada, denominada frecuencia de corte, existiendo un modo de propagación de dichos campos, el modo fundamental, que posee la frecuencia de corte mínima. Por debajo de esta frecuencia la guía no propaga la energía electromagnética.

APLICACIONES DE LAS MICROONDAS



Sin duda podemos decir que el campo mas valioso de aplicación de las m. es el ya mencionado de las comunicaciones, desde las que pudiéramos denominar privadas, pasando por las continentales e incontinentales, hasta llegar a las extraterrestres.

En este terreno, las m. actúan generalmente como portadoras de información, mediante una modulación o codificación apropiada. En los sistemas de radar, cabe citar desde los empleados en armamento y navegación, hasta los utilizados en sistemas de alarma; estos últimos sistemas suelen también basarse en efecto DOPPLER o en cambios que sufre la razón de onda estacionaria (SWR) de una antena, pudiendo incluso reconocerse la naturaleza del elemento de alarma. Sistema automático de puertas, medida de velocidad de vehículos, etc.

Otro gran campo de aplicación es el que se pudiera denominar científico. En radioastronomía ocurre que las radiaciones extraterrestres con frecuencia comprendidas entre 10 Mhz y 10Ghz pueden atravesar el filtro impuesto por la atmósfera y llegar hasta nosotros.

Entre estas radiaciones están algunas de tipo espectral, como la línea de 1420 OH, y otras de tipo continuo debidas a radiación térmica, emisión giromagnética, sincrotónica, etc. La detección de estas radiaciones permite obtener información de la dinámica y constitución del universo. En el estudio de los materiales (eléctricos, magnéticos, palmas) las m. se pueden utilizar bien para la determinación de parámetros macroscópicos, como son la permitividad eléctrica y la permeabilidad magnética, bien para el estudio directo de la estructura molecular de la materia mediante técnicas espectroscópicas y de resonancia.

En el campo médico y biológicose utilizan las m. Para la observación de cambios fisiológicos significativos de parámetros del sistema circulatorio y respiratorio.

Es imposible hacer una enumeración exhaustiva de aplicaciones que, aparte de las ya citadas, pueden ir desde la mera confección de juguetes hasta el controlar de procesos o funcionamiento de computadores ultra rápidos. Quizá el progreso futuro de las microondas. Esta en el desarrollo cada día mayor, de los dispositivos a estado sólido, en los cuáles se consigue una disminución de precio y tamaño que puede llegar a niveles insospechados; estos sistemas son la combinación de los generadores a semiconductores con las técnicas de circuiteria integrada, fácilmente adaptables a la producción en masa.

Sin embargo no todo son beneficios; un crecimiento incontrolado de la utilización de las m, puede dar lugar a problemas no solo de congestión del espectro, interferencias, etc., sino también de salud humana; este último aspecto no está lo suficientemente estudiado, como se deduce del hecho de que los índices de peligrosidad sean marcadamente diferentes de unos países a otros.

3. PROPAGACION DE MICROONDAS



Las microondas ocupan una porción del espectro de frecuencias entre 1 y 300 Ghz que corresponde a 10 cm y mm respectivamente, en longitudes de onda. En la práctica son ondas del orden de 1 Ghz a 12 Ghz.

La banda espectral de las microondas de divide en sub-bandas tal como se muestra en la tabla.
104892.gif

Sub-bandas en las que se divide la banda espectral de las microondas.

Los sistemas de microondas son usados en enlaces de televisión, en multienlaces telefónicos y general en redes con alta capacidad de canales de información.

Las microondas atraviesan fácilmente la ionosfera y son usadas también en comunicaciones por satélites.

La longitud de onda muy pequeña permite antenas de alta ganancias.

Como el radio de fresnel es relativamente pequeño, la propagación se efectúa como en el espacio libre.

Si hay obstáculos que obstruyan el radio de fresnel, la atenuación es proporcional al obstáculo.

De la ecuación se obtiene la atenuación Pr/Pt en enlaces espaciales

Pr/Pt (dB) = Gt (dB) + Gr (dB) +20 log h (m) - 22 - 20 log r (Km)

donde r es la distancia del enlace, h es la longitud de onda Gt Y Gr son las ganancias del transmisor y del receptor receptivamente.

A la atenuación en espacio libre se le agregan algunos valores de atenuación debido a obstáculos:

- 6 dB: Incidencia restante.
- 40 dB: Bloqueo total del haz.

La atenuación puede variar de 6 a 20 dB dependiendo del tipo de superficie que provoca la difracción. Así:

- 6 dB: Para una difracción en filo de cuchilla, con incidencia resante.
- 20 dB: Difracción con incidencia resante en obstáculo mas redondeado como terreno ligeramente ondulado o agua que sigue la curvatura de la tierra.

En condiciones desfavorables las perdidas por reflexión pueden ser de hasta 50 db (propagación sobre mar).

Si la superficie es rugosa se consideran despreciables las perdidas por reflexión.

La temperatura efectiva de ruido Te del circuito receptor, referida a los terminales de entrada y la cifra de ruido o (factor de ruido) F de un circuito están relacionados de la siguiente forma:

F = 1 + Te/To

F es la razón de la potencia de ruido real de salida (al conectar en un generador de temperatura normalizado de To=290^oK) y la potencia de ruido de salida que existiría para la misma entrada, si el circuito no tuviera ruidos propios.

Por tanto, se nota que

F = 1 o 0 dB corresponde a Te = 0^K

F = 2 o 3 dB corresponde a Te = 290^oK, etc.

UTILIZACION DE MICROONDAS EN COMUNICACIONES ESPACIALES

Los satélites artificiales han extendido el alcance de la línea de propagación y han hecho posible la transmisión transoceánica de microondas por su capacidad de admitir anchas bandas de frecuencias. La línea de transmisión puede extenderse por uno de los distintos medios existentes.

El satélite en forma de globo de plástico metalizado exteriormente puede ser empleado como reflector pasivo, en cuyo caso no se necesita equipo alguno en el satélite. Se ha estimado que veinticuatro de tales reflectores pasivos en órbitas polares establecidas al azar alrededor de unos 5000 kilómetros permitirían una transmisión transatlántica que solo se interrumpiría menos de 1% del tiempo.

Como segunda posibilidad, el satélite puede emplearse como un receptor activo en microondas, retransmitiendo la señal que recibe, bien instantáneamente o tras un almacenaje hasta que el este próximo a la estación receptora. En este último caso la capacidad del canal queda limitada.

Con el satélite en una órbita próxima es decir, inferior a 8000 kilómetros, la pérdida de transmisión es moderada, pero las estaciones terrestres deben tener antenas capaces de explotar casi de horizonte a horizonte. Si el satélite se sitúa en una órbita ecuatorial de veinticuatro horas parecerá como si tuviera fijo sobre algún punto del ecuador, darían una cobertura mundial. Con el satélite fijo en su posición respecto a la tierra y estabilizado en su orientación pueden emplearse antenas grandes y relativamente económicas para las estaciones terrestres, pudiéndose emplear en el satélite una antena con una directividad modesta.

104893.gif

Satélite artificial en órbita circular. r =42000 Km desconectado el radio terrestre Rt= 6370 Km se ve que la altura sobre el suelo del satélite será aproximadamente igual a 36000 Km que es la órbita de clark.

Los piases de la zona tropical y templada usan los satélites estacionarios.

Los países en zonas mas alejadas del ecuador son forzados a incluir la órbita en relación con el ecuador y prescindir así del sincronismo perfecto, por que el desplazamiento del satélite es lento con relación a la tierra.

Como el satélite no debe cargar grandes masas, la potencia de su transmisor es reducida y su antena es relativamente pequeña. Sus ondas deben atravesar la ionosfera terrestre, de ahí el uso de microondas para conseguir altísimas ganancias en las antenas terrestres son parabólicas de grandes dimensiones, aproximadamente igual a 30 m de diámetro con ganancia de 60 dB en 2 Ghz.

104894.gif

Los enlaces se hacen básicamente entre puntos visibles es decir, puntos altos de la topografía.

Cualquiera que sea la magnitud del sistema de microondas, para funcionamiento correcto es necesario que los recorridos entre enlaces tengan una altura libre adecuada para la propagación en toda época del año, tomando en cuenta las variaciones de las condiciones atmosféricas de la región.

Para poder calcular las alturas libres debe conocerse la topografía del terreno, así como la altura y ubicación de los obstáculos que puedan existir en el trayecto.

Antes de hacer mediciones en el terreno puede ser necesario estudiar los planos topográficos de la zona. Por lo general el estudio minucioso de los mapas y de los planos facilita las labores, sobre todo en sistema extensos con gran numero de repetidoras y donde existe una gran variedad de rutas posibles. Por proceso de eliminación y de selección ha de llegarse a la escogencia de la ruta más favorable.

Sobre un mapa de la región en escalas del orden de 1:10000, 1: 100000 o 1: 200000, se escogen estaciones separadas de 10 a 50 Km

104895.gif

Una vez escogidos los sitios de ubicación propuestos para las torres de las antenas, y habiéndose determinado la elevación del terreno comprendido entre dichos sitios, se prepara un diagrama de perfiles.

En la mayoría de los casos solo es necesario los perfiles de los obstáculos y de sus alrededores, donde pueda obstruirse la línea visual.

Las señales de radiotransmisión en las frecuencias de microondas generalmente se propagan en línea recta en la forma de un haz dirigido de un punto a otro. Sin embargo, el haz puede desviarse o curvarse hacia la tierra por efecto de la refracción de las ondas en la atmósfera. La magnitud de la curvatura se ha tenido en cuenta al calcular el factor K.

Puede emplearse un perfil de trayecto dibujado sin mostrar la curvatura de la tierra, y con el haz de microondas en línea recta entre las dos antenas. Dicho perfil representa el caso en el cual la curvatura del haz es igual a la del terreno y el radio de la tierra es infinito. Esta es una de las condiciones extremas que deben investigarse al estudiar el efecto de las condiciones atmosféricas anormales sobre la propagación de las microondas. Sobre el mismo gráfico se dibujan los recorridos del haz para otros posibles valores de K entre ellos el normal que es 4/3. El trazado de las curvas con diversos valores de K se hace con plantillas normalizadas. Traza el elipsoide de fresnel para verificar si ocurre obturación.

Determinando el perfil del terreno sobre el que se propaga el haz, se estudiará el margen de este con relación al obstáculo mas prominente. Dicho margen hay que compararlo con el radio de la n-esima zona abscisa o, esta dado por la ecuación

Rfn = Ö nhd1d2/d1+d2,m

donde :

Rfn = Radio de la n-esima zona de fresnel en metros.
h = Longitud de onda en metros.
d1 = Distancia del transmisor al punto considerado en metros.
d2 = Distancia del punto considerado al receptor en metros.

104896.gif

A partir del mapa de la región se traza en un papel 4/3 el perfil del terreno a lo largo de la trayectoria de estación a estación.

Ordinariamente, el margen sobre obstáculos se refiere al radio d la primera zona de fresnel; si el cociente correspondiente se lleva en abscisas en le gráfico, en coordenadas se obtendrá la influencia sobre la intensidad de campo. Se tiene las condiciones correspondientes a propagación en el espacio libre cuando al margen sobre obstáculos es 0.6 veces el radio de la primera zona de fresnel. Este es el criterio que se sigue en presencia de obstáculos para determinar la viabilidad de un enlace.

intervalo -3 < p/ Rf < 1

Gráfico de pérdidas por obstáculo.

Abscisa: margen sobre obstáculos/radio primera zona de fresnel. B. interpretaciones del margen sobre obstáculos

p >0 y p < o

La Figura muestra dos interpretaciones existentes para el margen sobre obstáculos p.

La siguiente es una formula empírica para pérdidas por obstáculo.

Po(dB) = 12 P/ Rf - 10

la ecuación anterior es válida en el intervalo - 3 < P/Rf < 1

Hay momentos en que la distribución de la densidad de la atmósfera cambia y la trayectoria se hace mas restante y pasa a sufrir obstrucción, se debe incluir en los cálculos una pérdida adicional de 3 dB.

Poniendo en funcionamiento tal enlace, la transmisión con atmósfera normal no tendrá la perdida de 3 dB, solo surge en momentos desfavorables y ya está incluida en el diseño.

Luego se calcula la atenuación con la ecuación ( )

Pr / Pt = Gt Ar / 4 TT r²

de la ecuación ( ) se tiene

Ar = Gr h² / 4 TT

Sustituyendo la ecuación ( ) en la ( ) se obtiene la ecuación ( )

Pr / Pt = Gt Gr h² / (4 TT r )²

donde los parámetros son los mismos que se dieron anteriormente.

Expresado en dB la ecuación ( ) se tiene la ecuación ( )

Pr / Pt (dB) = 10 log Pr / Pt = Gt (dB) + Gr (dB) + 20 log h - 20 log r - 22

Sobre un terreno liso el alcance D de la radiación depende de la altura de la antena h. Entonces:

D (km) = 4 Ö h (m)

El problema de las reflexiones interferentes es prácticamente inexistente ya que, para las ondas centimétricas todo terreno es áspero y no da buena reflexión según el criterio de Rayleigh.

El único caso peligroso es cuando existe un espejo de aguas mansas como un lago, bahía orio.

4. ANOMALÍAS DE PROPAGACION EN MICROONDAS


El gradiente del índice de refracción o factor K que corresponde al radio eficaz de la tierra se define como el grado y la dirección de la curvatura que describe el haz de microondas durante su propagación

K = R’ / Rt

Donde Rt es el radio real terrestre y R”es el radio de la curvatura ficticia de la tierra.

Cualquier variación del índice de refracción provocada por la alteración de las condiciones atmosféricas, se expresa como un cambio del factor K.

En condiciones atmosféricas normales, el valor de K varia desde 1.2 para regiones elevadas y secas (o 4/3 en onzas mediterráneas), hasta 2 o 3 para zonas costeras húmedas.

Cuando K se hace infinito, la tierra aparece ante el haz como perfectamente plana, ya que su curvatura tiene exactamente el mismo valor que la terrestre.

Si el valor de K disminuye a menos de 1, el haz se curva en forma opuesta a la curvatura terrestre. Este efecto puede obstruir parcialmente al trayecto de transmisión, produciéndose así una difracción.

El valor de la curvatura terrestre para los distintos valores de K se calcula mediante la siguiente fórmula

h = d1 d2 / 1.5 K donde
h = Cambio de la distancia vertical desde una línea horizontal de referencia, en pies,
d1 = Distancia desde un punto hasta uno de los extremos del trayecto, en millas.
d2 = Distancia desde el mismo punto anterior hasta el otro extremo del trayecto, en
millas.
K = Factor del radio eficaz de la tierra.
1ml = 1.61Km.
1 pie = 0.3 m.

Con excepción del desvanecimiento por efecto de trayectos múltiples, los desvanecimientos son fácilmente superables mediante:

- Diversidad de espacio.
- Diversidad de frecuencia.
- Diversidad de polarización.

La alteraciones del valor de K desde 1 hasta infinito ( Rango normal de K), tiene escasa influencia en el nivel de intensidad con que se reciben las señales, cuando el trayecto se ha proyectado en forma adecuada.

Las anomalías de propagación ocurren cuando K es inferior a 1, el trayecto podría quedar obstruido y por lo tanto seria vulnerable a los fuertes desvanecimientos provocados por el efecto de trayectos múltiples.

Cuando K forma un valor negativo, el trayecto podría resultar atrapado entre capas atmosféricas y en consecuencia seria susceptible a sufrir desvanecimiento total.

DESVANECIMIENTO



El desvanecimiento se debe normalmente a los cambios atmosféricos y a las reflexiones del trayecto de propagación al encontrar superficies terrestres o acuáticas.

La intensidad del desvanecimiento aumenta en general con la frecuencia y la longitud de trayecto.

En caso de transmisión sobre terreno accidentado, el desvanecimiento debido a propagación multrayecto es relativamente independiente del citado margen sobre obstáculo y en casos extremos tiende a aproximarse a la distribución de Rayleigh, es decir, la probabilidad de que el valor instantáneo del campo supere el valor R es :

-R/R0
P (R) = e

En donde: Ro es el valor eficaz.

En la figura se presentan valores típicos de desvanecimiento para trayectos con suficiente margen sobre obstáculos.

Los tipos de desvanecimiento que influye sobre la contabilidad de la propagación en los sistemas de microondas son selectivos y no selectivos.

104897.gif

Desvanecimiento en el peor mes para trayectos de 40 a 60 Kms con visibilidad y margen sobre obstáculos de 15 a 30 m.


5. METODOS DE DIVERSIDAD EN MICROONDAS.


Cundo se produce desvanecimiento o se varían los equipos de radiocanal normal, su señal correspondiente puede ser transferida a otro de los canales de reversa por medio de un rápido sistema de conmutación, Este sistema la fiabilidad del sistema y se conoce como técnicas de diversidad.

El principio de recepción por diversidad consiste en recibir y analizar varias señales no correlacionales y escoger en cada instante la mejor (sistema de diversidad por conmutación), o en recibir en todo momento una combinación de las distintas señales (sistemas de diversidad en espacio y de diversidad en frecuencia.

Existe un tercer método para reducir al mínimo el tiempo fuera de servicio del sistema por desvanecimiento profundo denominado Diversidad de polarización.


DIVERSIDAD DE POLARIZACION



En este método dos señales procedentes del radiotransmisor se envían simultáneamente por dos antenas separadas, una con polarización vertical y la otra horizontal. La diversidad de polarización resulta útil para la transmisión por onda indirecta en la parte baja del espectro de frecuencias.

En cambio, este método no da resultados en la transmisión de microondas por onda espacial debido a que generalmente ambas señales polarizadas se desvanecen al mismo tiempo.

6. DESVANECIMIENTO TOTAL



Comparativamente el desvanecimiento total es raro, pero cuando se presenta, sus efectos suelen ser catastróficos, pues anulan por completo las señales. En este caso, los métodos tradicionales usados para mejorar la contabilidad de los radioenlaces, tales como: Aumento del margen contra el desvanecimiento o la aplicación de diversidad resultan prácticamente ineficaces.

Se considera como desvanecimiento total a cualquier atenuación excesivamente larga de las señales de microondas.

Para describir el desvanecimiento total se utilizan diversos términos, tales como;

- Formación de ductos
- Atrapamiento del haz.
-Bloqueo o desaparición de las señales.
- Desacople de antena.

El desvanecimiento total se caracteriza por una aguda disminución de densidad atmosférica a medida que aumenta la altura, que es la causante del verdadero esvanecimiento.

Las interrupciones de señal calificadas como catastróficas se producen simultáneamente en ambas direcciones de transmisión y en los dos trayectos de diversidad. Salvo algunos casos aislados, la recepción en diversidad de espacio ha demostrado que este tipo de desvanecimiento tiene una alta selectividad.

El desvanecimiento total se confunde a menudo con el desvanecimiento por dirección u obstrucción del haz cuando se produce una curvatura inversa, pero las características de estos dos fenómenos son opuestas. El desvanecimiento total se produce por presencia de una atmósfera superrefractiva, que a veces es invisible salvo en zonas brumosas, sin embargo, en algunas ocasiones dicha atmósfera resulta visible en forma de niebla, de vapor de agua caliente o niebla que refracta el frente de la onda del haz abajo hasta una superficie acuática o terrena, antes de llegar a la antena receptora. En estos casos, generalmente ninguna parte de la señal llega a la antena receptora.

Cuando una masa de aire frío sobre zonas cálidas y húmedas o sobre regiones acuáticas templadas, la atmósfera circundante tiene a comportarse en forma superrefractiva. Como consecuencia, los trayectos de microondas poca despejados, ubicados en dichas zonas o regiones, se tornan susceptibles a sufrir undesvanecimiento total.

La masa de aire puede producirse:

a. Con el paso de un frente frío sobre un terreno cálido y húmedo a cualquier hora del día o de la noche.
b. Por decantación. Es el lento asentamiento de una masa de aire fresco en un sistema atmosférico de alta presión. La masa de aire se calienta por compresión adiabática (sin perdida ni aumento de calor) y al asentarse va cubriendo y encerrando otra masa de aire mas frío y húmedo sostenida por la superficie mojada.

Las masas o capas superrefractivas se producen con mas frecuencias en las noches claras, serenas y frías en las primeras horas de la mañana, pero raramente en las redes. Su presencia va acompañada por:

- Calor
- Baja humedad
- Atmósfera heterogénea
- Turbulencia del aire


MODELO DE PROPAGACION DENTRO DE UNA CAPA SUPEREFRACTIVA EN MICROONDAS



Para simplificar el análisis de la propagación de un frente de onda dentro de una capa superrefractiva, se supone que existen las siguientes condiciones:

a. El frente de onda esta representado por un solo haz.
b. El trayecto de propagación es bilateral, es decir, que los haces de transmisión y recepción pasan recíprocamente por una misma ruta.
c. El haz puede penetrar en la capa superrefractiva antes de ser reflejado en la superficie límite.

Cuando la antena transmisora esta ubicada sobre la capa refracta, uno de los haces pasa por encima del conductor, mientras que el otro haz se propaga dentro del conductor. El haz superior se desplaza normalmente cuando el factor K varia entre 1 y 3, según el gradiente de refracción existente sobre el conductor. Cuando la antena receptora intercepta este haz, puede recibir señales a un nivel normal o tal vez a un nivel correspondiente a una señal obstruida parcialmente. Dentro del conductor, la antena B continua recibiendo una señal de alto nivel si el lóbulo de irradiación tiene suficiente amplitud para dar paso al haz superefractado, que se representa con una línea quebrada. Cada trayecto superrefractado tiene un factor distinto.

La antena A, ubicada en la primera zona de sombra, queda bloqueada totalmente. La antena C estuvo bloqueada mientras la capa superrefractiva se eleva del agua, pero a medida que alcanzaba su altura actual iba recibiendo una señal de alto nivel, aunque posiblemente con cierta fluctuación.

La antena D ubicada debajo de la línea de visión directa y que esta obstruida en condiciones normales de propagación, ahora recibe una señal con el mismo alto nivel fluctuante que la antena C.

La antena E, muy debajo de la línea de visión directa durante las condiciones normales de propagación, ahora esta en la segunda zona de sombra y permanecerá inactiva sin recibir señales, aunque la radiofrecuencia fluctúe cuando la capa se eleva sobre el agua.

La antena F recibe una señal de nivel normal mientras existe la capa superrefractiva.

Cuando mas alta es la antena transmisora, mas grande es la longitud del horizonte radioeléctrico y mayor el rango de la transmisión. Cuando dicha antena queda dentro de la capa, se corta al alcance del horizonte. Las antenas G, I, J, y K están totalmente bloqueadas. H recibe una señal normal; O y P normalmente ubicadas mas allá del horizonte radioeléctrico ahora llegan señales ampliamente fluctuantes.

La trayectoria del haz de microondas dentro de una capa atmosférica siperrefractiva asentada en el suelo a. Antena transmisora ubicada sobre la capa, y b. antena transmisora dentro de la capa. Los haces superrefractados directos desde la antena transmisora a las receptoras L, M y N solo se forman cuando la capa es muy espesa.

DESVANECIMIENTO TOTAL POR DESACOPLE DE ANTENA



Aun cuando la antena receptora este dentro del horizonte radioeléctrico, la aparición de una capa superrefractiva hace que le haz propagado llegue a su destino con un ángulo de elevación mayor que el normal. Si en condiciones atmosféricas normales las antenas transmisoras y receptoras fueran orientadas para obtener la máxima respuesta con el mayor nivel de señal, al variar las condiciones formado una capa superefractiva el ángulo de incidencia del haz se desplazara hacia arriba. Teniendo en cuenta que las antenas de grandes dimensiones o los reflectores pasivos tienen un lóbulo de irradiación estrecho y considerado también la longitud de los trayectos de microondas, un cambio de 0.5^o o mas en el ángulo de llegada del haz puede desplazar el trayecto, a lejano del lóbulo principal de la antena. En este evento se producirá un desvanecimiento total.

El comportamiento característico del desvanecimiento total por desacople de antena es idéntico al que se produce cuando la antena receptora se encuentra mas allá del horizonte radioeléctrico.

Cuando se anticipa o se experimenta un desacople, las antenas receptoras pueden inclinares levemente hacia arriba con lo cual también se introduce una pérdida de 1 o 2 dB durante la propagación normal.

En la instalación de antenas alta y baja la inferior puede reducirse de tamaño. Así mismo, la iniciación de las antenas trae la ventaja de aumentar la discriminación a las reflexiones superficiales durante los períodos de programación normal.

Si después de haber efectuado una instalación de microondas se descubre que el trayecto es suceptible a sufrir desvanecimiento total :

a. Estudiar la posibilidad de introducir desacople de antenas. Esta medida se toma especialmente cuando:

- Las parábolas o los reflectores son de grandes dimensiones
- El trayecto es de gran longitud
- Se utiliza la gama superior de 6 a 13 Ghz.

Si inicialmente la posición de una o de ambas antenas transmisoras se desvía levemente hacia abajo con respecto al ángulo normal de incidencia del haz, la capa superrefactiva puede desplazar el haz en forma que no llegue el lóbulo principal de la antena receptora. En estas condiciones se producirá un desvanecimiento total. En este caso la mayor o la menor de las dos antenas puede reorientarse verticalmente hasta encontrar un trayecto adecuado. Sin embargo, en vez de reorientar las antenas grandes para evitar un posible desacople, conviene utilizar una pequeña antena receptora de prueba, de 60 cm a 1.20 m para efectuar el rastreo del trayecto. A veces suele colocarse una pequeña antena fija para evitar el efecto de desacople entre las antenas grandes.

b. Si al antena receptora queda mas allá del horizonte visual, en vez de quedar solo desorientada o desacoplada, se debe investigar si a lo largo del mástil o torre de soporte de la antena se encuentra presente alguna señal estable de nivel inferior al normal. El trayecto de la señal posiblemente queda a una altura de 3 a 9 m sobre el nivel del terreno o bien debajo de la linea normal de visión directa. Si se comprueba la existencia de este trayecto durante el desvanecimiento total,

Los receptores deben disponerse para funcionar en diversidad de espacio. Si ya se cuenta con este tipo de recepción debe utilizarse además diversidad de antenas sobre la torre.

Dado que el desvanecimiento total obstruye el trayecto simultáneamente en ambos sentidos, el sistema de transmisión debe estar provisto de equipo de reserva activo con conmutación automática o manual, o con combinadores de antena.

c. Aumentar la altura libre del trayecto a un mínimo de K=1, sobre una capa de 50 m de altura. Mediante pruebas apropiadas se localiza la capa atmosférica y se determina la altura de las antenas ajustadas para tal fin. Si se sospeche la existencia de una capa reactiva en la mitad del trayecto A veces es inevitable la presencia de desvanecimiento total en algunas zonas geográficas durante ciertas épocas del año cuando existe una combinación desafortunada de factores determinantes, tales como la densidad atmosférica y la naturaleza del terreno.

7. CONFIABILIDAD DE SISTEMAS DE RADIOTRANSMISION POR MICROONDAS



Las normas de seguridad de funcionamiento de los sistemas de microondas han alcanzado gran rigidez. Por ejemplo, se utiliza un 99.98% de confiabilidad general en un sistema patrón de 6000 Km. de longitud, lo que equivale a permitir solo un máximo de 25 segundos de interrupción del año por cada enlace.

Por enlace o radioenlace se entiende el tramo de transmisión directa entre dos estaciones adyacentes, ya sean terminales o repetidoras, de un sistema de microondas. El enlace comprende los equipos correspondientes de las dos estaciones, como así mismo las antenas y el trayecto de propagación entre ambas. De acuerdo con las recomendaciones del CCIR, los enlaces, deben tener una longitud media de 50 Km.

Las empresas industriales que emplean sistemas de telecomunicaciones también hablan de una confiabilidad media del orden de 99.9999%, o sea un máximo de 30 segundos de interrupciones por año, en los sistemas de microondas de largo alcance.

Los cálculos estimados y cómputos de interrupciones del servicio por fallas de propagación, emplean procedimientos parcial o totalmente empíricos. Los resultados de dichos cálculos generalmente se dan como tiempo fuera de servicio (TFS) anual por enlace o porcentaje de confiabilidad por enlace.

La confiabilidad de los enlaces de microondas puede darse según fallas de equipo, aplicándose cálculos de probabilidad.

Los resultados de los cálculos de confiabilidad de los equipos de microondas se expresan como disponibilidad (del equipo) por enlace (D).

D = TES / TTD

Donde TES es el tiempo en servicio dentro de un período determinado y TDD es el tiempo total disponible.

Una aplicación lógica de este método de calculo es sumar las interrupciones por enlace durante el ano, causadas por:

- averías del equipo
- malas condiciones de propagación

Con el resultado se obtiene el TFS total que se puede aplicar como cifra de mérito de confiabilidad del enlace.

Ninguno de los parámetros mencionados

- Tiempo fuera de servicio anualmente,
- Confiabilidad en porcentaje o
- disponibilidad del equipo

Proporciona una dirección adecuada de la seguridad de funcionamiento del equipo, en el caso de sistemas superconfiables.

Los cálculos de TES (o tiempo disponible, D) y de TFS de los equipos de microondas siempre descansan en dos factores básicos:

- El tiempo medio (de Funcionamiento) entre falla (TMEF)
- El tiempo medio (de interrupción) hasta el servicio (TMHR).

El TMHR incluye las siguientes demoras:

- Notificación de falla ,
- Viaje hasta el lugar de instalación del equipo averiado,
- Determinación del carácter de la falla y tiempo que realmente se ocupa para efectuar la reparación o el reemplazo necesario.

Por lo tanto el TMHR representa el promedio de tiempo real fuera de servicio debido a fallas.

La conexión entre el TMEF y el TMHR determina la relación de TFS de servicio debido a fallas.

La conexión entre el TMEF y el TMHR determina la relación de TFS(tiempo no disponible o ND)

TFS (ND) = TMHR / TMEF

TES (D) + 1 -ND

TFS anual = 8760 * (ND) horas

El concepto de confiabilidad esta dado por confiabilidad = TES * 100%
En un sistema redundante:

ND = 5 / 5000 =0.001 = 0.1%

Para el TMHR se ha tomado como ejemplo un valor de 5 horas que, como se ha mencionado, incluye todo el tiempo que transcurre desde el instante en que se produce una avería hasta que el equipo ha sido reparado y puesto nuevamente en servicio. También se supone un TMEF de 5000 horas para cada juego de equipo. Comprende aproximadamente a un procedimiento de dos fallas por año, fallas reales
por que no hay duplicación de equipo.

D = 1 - 0.001 = 0.999 = 99.9%

TFS anual = 0.001 * 8760 = 8.76 horas

En un sistema redundante, se supone que se utilizan dos juegos de equipos, interconectados por conmutadores y detectores automáticos para el traspaso instantánea del equipo en servicio al de reserva en caso de avería. también se supone

TMEF = 5000 horas cada juego de equipo y

TMHR = 5 horas para cualquier falla.

Cualquier falla en un solo juego de equipo no interrumpe el servicio. La interrupción solo puede ocurrir si se produce falla en ambos juegos simultáneamente.

Suponiendo que las falla de los dos juegos de equipos del enlace se producen en forma errática e independiente.

(TMEF) red = (TMEF)² / TMHR

Luego,

(TMEF) red = (5000)² / 5 = 5000000 horas = 570 anos

con los valores supuestos, el tiempo medio de funcionamiento entre fallas del enlace(averías reales del sistema) seria de 570 anos.

La relación TFS del enlace (D red) esta dada por

ND red= TMHR / (TMEF)red = (TMHR/ TMER)² = (5 / 5000)² = 0.001%

D red = 1 - 0.00001 = 0.9999 = 99.9999%

TFS anual = 0.000001 * 8760 = 0.0876 hr = 32 seg.

En base a los valores empleados, las características de confiabilidad del equipo de un enlace puede especificarse como 32 segundos de TFS anual, esta cifra es solo una abstracción matemática. Como la duración de cualquier averiada en indivisible, puede suceder que en un ano determinado no ocurra ninguna interrupción.

De producirse una falla, esta tendría que ser mucho mas prolongada (las 5 horas tomadas como ejemplo).

El tiempo de restablecimiento estipulado en horas tendrá que ser acompañando de un valor equivalente de TMEF calculando en millones de horas (o sea cientos de años) para obtener una confiabilidad de 99.9999% por enlace.

TMEF = 10^ TMHR

Por ejemplo el tiempo de reparación es de 5 horas, el TMEF debe ser de 5000000 de horas = 570 anos. Si el tiempo de reparación es de 1 hora, el TMEF debe ser 1000000 de horas = 14 anos.

El valor de 32 segundos de TFS en la practica carece de significado efectivo ya que no puede existir en realidad, excepto como una improbable serie de coincidencias. El enlace tendría que funcionar por lo menos durante 570 anos para poder verificar el valor de confiabilidad; en dicho período habrían 569 anos sin ninguna falla y un ano cualquiera con 5 horas de interrupción.

los parámetros de disponibilidad o confiabilidad solo tendrían significado como rendimiento medio en un período de unos 10000 anos, o sea en 10000 enlaces.

En la práctica, para el cálculo de confiabilidad se presentan limitaciones impuestas por el hecho de que los sistemas de microondas generalmente deben funcionar con estaciones repetidoras distribuidas en una amplia región geográfica, incluso algunos puntos de difícil acceso. Este problema se agudiza en el caso de sistemas de muy largo alcance en que se necesita con mayor razón una confiabilidad elevada. Por lo tanto, la suposición de que el TMHR será menor de 1 o 2 horas, no esta de acuerdo con la realidad, incluso, la suposición de un TMHR de 5 horas, puede ser demasiado optimista.





Creative Commons License
Estos contenidos son Copyleft bajo una Licencia de Creative Commons.
Pueden ser distribuidos o reproducidos, mencionando su autor.
Siempre que no sea para un uso económico o comercial.
No se pueden alterar o transformar, para generar unos nuevos.

 
TodoMonografías.com © 2006 - Términos y Condiciones - Esta obra está bajo una licencia de Creative Commons. Creative Commons License